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ABSTRACT 
Some imaging tasks and modalities (e.g., interferomet-
ric SAR) require managing a dynamic spatio-temporal 
configuration of sensors (whether electro-optic or RF) 
over a wide area. One promising approach is to mount 
each sensor on a separate unpiloted vehicle, and endow 
the population of such vehicles with the ability to con-
figure themselves and coordinate their actions to create 
and maintain the required sensor configuration. This 
paper describes some scenarios where such a capability 
would be useful, identifies technical issues that need to 
be addressed, suggests general principles and tech-
niques that we have found useful in dealing with such 
scenarios, and describes a specific example that we 
have constructed and tested in a simulation environ-
ment. 

SCENARIOS 
A number of important military scenarios would benefit 
greatly from a swarm of sensor-bearing UAV’s. These 
include: 

Situation awareness.—Maintaining situation aware-
ness requires finding, locating, identifying, and tracking 
potential targets and other relevant objects. Initial ob-
ject discovery requires a diffuse view of the battlespace, 
and can be supported by spreading the swarm out 
widely. Locating objects requires constructing a map of 
the local environment, a task that can be done collabo-
ratively by position-aware UAV’s. Identification can be 
aided by bringing together multiple sensors to provide 
more refined imagery. Tracking (especially in urban 
environments) requires the ability to move with the tar-
get.  

Urban tomography.—A critical enabler for military 
operations in urban terrain (MOUT) is identifying the 
number and distribution of people in a building from 
the outside (R07, “Through-Wall Sensor”3). Human 
bodies have a very different radar cross-section than 
building materials. A ring of UAV’s flying up the out-
side of a building could collect reflection and transmis-
sion data from different angles at each floor, and use 

mathematical techniques from medical tomography to 
map the building interior and locate humans. This vi-
sion requires the ability to arrange the UAV’s in a ro-
bust formation around the building, maintain this con-
figuration as it moves vertically, repair it if individual 
UAV’s are disabled, and assign roles (sender vs. re-
ceiver) dynamically. 

FOPEN.—L-band radars can penetrate foliage to detect 
substantial objects (such as trucks or artillery) hidden 
under the tree canopy, but at these long wavelengths, 
most reflection is specular, and target identification be-
comes difficult. This difficulty can be greatly reduced 
by interferometry among signals from multiple coordi-
nated UAV’s. Such a technique permits the reconstruc-
tion of the height of detected objects (or, with a suffi-
cient number of sensors, full 3D imaging). 

These scenarios, and others like them, have a number of 
common requirements that swarms of autonomous 
UAV’s can address. 

• Sensory input is needed from different spatial loca-
tions under tight temporal constraints. 

• The separation of these locations is often greater 
than could be achieved by mounting sensors at 
fixed locations on a single platform (e.g., at oppo-
site ends of an airplane wing). 

• The relative alignment of the sensors, and their 
roles, often needs to change in response to events 
in the battlefield. A static configuration of sensors 
will not meet the needs of the dynamically chang-
ing environment anticipated in these scenarios. 

ISSUES 
Coordinating multiple UAV’s for such sensing scenar-
ios requires spatial and temporal coordination and the 
alignment of distinct roles within the team. Spatial co-
ordination distributes units over the area being ob-
served, and includes such tasks as determining the 
maximum spread between vehicles and the minimum 
acceptable number of revisits per unit area, assigning 
sectors to each unit, causing a team to converge in a 
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specific location, or stationing 
UAV’s in a particular forma-
tion. Temporal coordination 
ensures that all UAV’s act at 
the right time or with the right 
frequency, provide their input 
at the right moment, and as-
sume their designated loca-
tions and operating roles at the 
right time for the constellation 
to work as a whole. Team co-
ordination seeks to optimize 
the assignment of individual 
vehicles to roles in terms of their preferences or con-
straints (e.g., the configuration of individual vehicles), 
managing the formation, coordination, maintenance, 
and dispersion of groups of vehicles. 
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Figure 1.—Statechart depicting some of the permitted states and transitions of an 
agent in a role. 

Conventional (non-autonomous) approaches require 
humans to fly each UAV. This approach is costly both 
in terms of manpower and (since all communications 
must go through the control center) bandwidth, and in 
addition can be a difficult cognitive task. Autonomous 
coordination among the aircraft permits the use of local 
nearest-neighbor communications (reducing band-
width), and our experiments show that simple local al-
gorithms can yield robust self-organization sufficient to 
satisfy these missions. 

GENERAL PRINCIPLES AND 
TECHNIQUES 

We have found three classes of principles and tech-
niques to be useful in addressing problems of this na-
ture. The first class concerns the relation between indi-
vidual agents and the groups of which they are a part, 
and falls under the general rubric of “roles.” The second 
concerns mechanisms for optimizing such systems in 
the face of resource constraints. The third is the broad 
area of mechanisms inspired by natural systems. 

Issues in Team and Role Coordination 
Effective modeling and design of agents in emergent 
swarms is greatly facilitated by identifying distinct 
“roles,” or patterns of behavior, that agents can “play” 
in different mission settings.13 A role is a class that de-
fines a normative behavioral repertoire of an agent. 
Roles provide both the building blocks for agent social 
systems and the requirements by which agents interact. 
Each agent is linked to other agents by the roles it plays 
by virtue of the system’s functional requirements—
which are based on the expectations that the system has 
of the agent. The static semantics of roles, role forma-
tion and configuration, and the dynamic interactions 
among roles have been examined closely in recent 

years,4-7, 13 and an initial axiomatization has been pro-
posed.6 However, little work has been done on formal-
izing the temporal aspects of dynamic role assignment. 
Role modelers refer only informally to actions such as 
“taking on a role,” “playing a role,” “changing roles,” 
and “leaving roles.” The ambiguities inherent in these 
terms pose difficulties for applications such as ours, in 
which dynamic role change is a pervasive feature of the 
system’s behavior.  

To understand these issues better, we distinguish two 
aspects to a change in role, summarized in Figure 1 and 
discussed more fully elsewhere.9 Role classification 
gives an agent the methods necessary to execute the be-
haviors in a role). Role activation captures the sense 
that an agent is currently executing in a role.  

Dynamic Classification 
Dynamic classification refers to the ability to change 
the classification of an entity. Consistent with the pro-
posed axiomatization,6 we insist that each agent have at 
least one role at all times. Dynamic classification deals 
with adding additional roles or removing roles beyond 
the minimum of one. This requirement is analogous 
with the notion that every human must play the “per-
son” role, whatever other roles they may have. In the 
case of humans, this minimal role persists throughout 
the agent’s life. It is conceivable that an artificial agent 
might begin with the minimal role A, add role B, then 
remove role A, leaving it with the minimal role B. 
Whether such a fundamental redefinition of the agent is 
possible will depend on such features as physical 
equipment associated with the agent and the nature of 
the platforms on which the agent can run. An alterna-
tive approach is to define a basic role AgentId that be-
longs to every agent, whatever other roles it may play. 
(Id in AgentId recalls the Freudian notion of primal ba-
sic urges, not “Identity.”) Having AgentId as a role is a 
controversial point.  However, elsewhere8 we have de-
fined role as a class that defines a normative behavioral 
repertoire of an agent. The basic class AgentId defines 
the normative behavioral repertoire for agenthood. 



Table 2: Operators for Dynamic Activation 

Prestate Poststate 
Operator Active Sus-

pended 
Active Sus-

pended 
Activate A B A and B  
Suspend A and B  A B 
Shift A B B A 

Table 1: Operators for Dynamic Classification 

Operator Pre-state Post-state 
Classify A and not B A and B 
Declassify A and B A and not B 
Reclassify A B 
Create Null A 
Terminate A Null 

To become an instance of a given role, the agent is 
classified as an instance of, or occupies, that role. Once 
classified, the agent occupies the new role and pos-
sesses all of its features. In the opposite process, if an 
agent is declassified, it is removed as an instance of a 
particular role—and no longer occupies the role nor 
possesses features unique to that role. An agent is said 
to be reclassified when it is both declassified in one role 
and classified as another. Agent instantiation and dele-
tion are limiting cases of changes in classification, and 
we describe their consequences at the role level with 
create and delete operators. Table 1 summarizes roles 
held by an agent before and after each of these opera-
tors.  

Dynamic Activation 
In addition to changing roles over time (dynamic classi-
fication), an agent may have multiple roles that apply to 
it at any one moment, a condition that we describe as 
multiple classification (not to be confused with multiple 
inheritance). Role activation seeks to capture the intui-
tion that an agent may hold multiple roles concurrently 
while not actively executing them at the same instant. 

Formalizing such a notion of “activity” is problematic. 
In some sense, even a quiescent agent that is waiting for 
a message or some signal to awaken could be consid-
ered active in its role, because alertness can be thought 
of an activity. UML 2.010 offers a useful refinement by 
distinguishing between user-defined actions (which are 
represented explicitly in sequence diagrams and activity 
diagrams) and fundamental system actions such as i/o, 
invocation, and data flow (which are not represented as 
actions in these diagrams). In 
UML, each activation, or execu-
tion occurrence, has some dura-
tion and is bounded by a start 
and stop point.  We propose to 
take advantage of this refine-
ment in the following unifica-
tion: 

• We adopt the UML 2.0 defini-
tion of action. Any unit of be-
havior that has started and has 

not yet ended is considered “active.” Otherwise it is 
“inactive.” 

 

• We use the basic role of AgentId to specify primitive 
behavior. Behaviors such as controlling, handling 
data flows, and waiting for messages and signals are 
“primitive” actions that all entities must possess to be 
agents. Therefore, any entity playing the role of 
AgentId can exhibit this basic behavior, deferring 
“higher-level” behavior to user-specified actions in 
more specialized roles. Furthermore, these basic be-
haviors are themselves actions. For example, actions 
that support listening for messages and signals, by 
definition, begin the moment an entity is classified an 
AgentId and cease when the entity is no longer an 
AgentId. 

• We consider roles other than AgentId to be active 
only when their user-defined actions are active. Ac-
tivity of primitive actions is attributed to the concur-
rently executing AgentId role, not to the user-
specified role.  

Dynamic activation involves the operators activate, sus-
pend, and shift. Table 2 summarizes the role assign-
ments as affected by these operators.  

Resource Constrained Local Optimization 
In the execution of a particular mission, we deploy 
many simple UAV’s in a mission swarm and task the 
swarm (not the individual UAV) with the mission goal 
(e.g., imaging of a particular target with a minimum 
image quality). Once tasked, the UAV’s of the swarm 
coordinate their individual activities (see Team and 

Role Coordination) to achieve 
the mission goal. Initial Flight
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Figure 2. A swarm needs to adjust its exe-
cution to meet the mission goal. 

Especially if a mission takes a 
long time to complete, we need 
to endow the swarm with the 
ability to judge the current qual-
ity of the mission achievement 
(e.g., the quality of the best im-
age it acquired thus far) and to 
adjust its execution accordingly. 
In the case of distributed imag-
ing of a target, the UAV may 



have acquired a low-quality image in a particular flight 
formation already, and now the swarm needs to re-
configure the formation to improve the image quality 
until the requirements of the mission goal are met. 
Figure 2 shows the resulting closed adjustment loop. 

Adapting the swarm’s mission execution to the quality 
of the mission goal achievement requires a) that the 
swarm is able to perceive the current quality, and b) 
that the swarm knows how to reconfigure to improve 
this quality. Of course, since there is not really a 
“swarm” entity, these two issues immediately translate 
to the need for the individual UAV to know whether 
and how it needs to change its behavior to improve the 
overall (global) system performance. 

In the following paragraphs, we will contrast three ap-
proaches to the re-configuration problem. We evaluate 
the applicability of these approaches with respect to the 
effort involved in the specification of the knowledge of 
the individual UAV and the processing and communi-
cation effort that arises in the execution. 

All three cases assume local autonomous control by the 
UAV (no central controller). The re-configuration proc-
ess is iterative: each UAV runs through multiple cycles 
of perception (learning the locations of other UAV’s), 
planning (selecting a new location), and execution (ap-
proaching the selected location). The planning of the 
new location assumes that if no other UAV were to re-
locate, the resulting new formation would achieve a 
better image quality. As movements of other UAV’s 
invalidate this assumption, the process repeats. 

Implicit Local Model 
The implicit local model is a (numerical) function given 
to the UAV that takes as an input the state of the swarm 
(locations) as perceived by the UAV and returns the 
new location that the UAV should assume. 

Consider for example distributed SAR imaging. We 
know that a formation that approximates a regular array 
results in good images. So, an implicit local model for 
the UAV would be a function that computes from the 
current formation a location for the UAV that would 
make the whole arrangement more regular. 

To provide the UAV with an implicit local model, we 
need to understand the characteristics of those emergent 
UAV patterns that lead to good performance and we 
need to craft the local transformation function that de-
termines the best change for one UAV given the overall 
arrangement. Furthermore, since the swarm reconfigu-
ration emerges from the decisions of the individual 
UAV without any representation of the global state or 
goals, the design process must include extensive valida-
tion of the implicit model. Thus, the approach requires 

rather complex knowledge engineering before deploy-
ment. In compensation, the cost incurred by the ap-
proach during execution is minimal, since the UAV 
only needs to execute the transition function once to 
complete the planning process. 

Fitness Evaluation 
If the construction of a function that generates the new 
location directly is not feasible, a local search approach 
may be followed. Our second approach constructs a fit-
ness function that translates a given state of the swarm 
(UAV locations) into a fitness value (e.g., a number in 
[0,1]). Thus, the individual UAV may perform a search 
for a nearby peak in the fitness landscape that is 
spanned by the (virtual) variation of the UAV’s location 
in the overall swarm arrangement. 

In the case of distributed SAR imaging, a useful fitness 
function might evaluate how much a given set of UAV 
locations resembles a regular array. The individual 
UAV would then seek to improve the image quality 
achieved by the formation by assuming a new location 
that results in a more regular array. 

The reasoning process of the individual UAV is still 
partially implicit. Though the use of the fitness function 
now explicitly analyses the global state of the swarm 
(how close to a regular array is the formation), it still 
includes the implicit assumption that a particular UAV 
arrangement will result in good image quality. So, from 
a knowledge engineering perspective, the designer still 
has to understand the link between the state of the 
swarm and the quality of the mission performance. 

The use of a fitness evaluation of possible swarm states 
results in a higher computational effort during the exe-
cution of the mission. The UAV must generate and 
evaluate possible formations that only vary its own lo-
cation relative to the currently perceived arrangement 
of the UAV. Once it finds a formation with a suffi-
ciently improved fitness, it will take its own location in 
this formation as the goal for its subsequent relocation 
process. 

Quality Evaluation 
Specifying a metric that explicitly measures the quality 
of the mission achievement for a given state of the 
swarm is the most explicit approach. Thus, instead of 
assuming that a certain state results in a certain quality 
(e.g., regular array for SAR imaging), this approach 
translates a given state into an expected outcome and 
then explicitly measures the quality of the result. 

In the case of distributed SAR imaging, we would have 
to construct an image simulator that translates a UAV 
formation into the expected image. Then we would ap-



ply standard image-quality metrics that 
measure, for instance, the contrast or spatial 
resolution that would be achieved. 

The knowledge engineering process for this 
approach is relatively simple and completely 
driven by the final goal of the respective 
mission. The design includes modeling the 
process of mission execution (the image ac-
quisition and SAR processing) and the 
specification of mission quality metrics. 

Depending on the computational cost of pre-
dicting the outcome for a particular swarm state, the 
execution of the mission optimization process can be 
very expensive. As in the case of the fitness evaluation 
of a given state, the UAV performs a search across pos-
sible formations, but rather than applying a single func-
tion, the UAV must first estimate the mission outcome 
and then apply the quality metric. 
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Figure 3. Three approaches to mission quality optimization. 

Summary of Optimization Methods 
If we deploy swarms of many simple UAV to perform 
an extended mission, we need to endow the swarm with 
the ability to adapt its mission execution based on the 
quality of the quality of the goal achievement. The 
autonomy of the UAV and the limited availability of 
processing and communications resources as well as the 
uncertainty and noise in the interactions with the physi-
cal environment (sensing and acting) require that the 
individual UAV change its behavior locally to improve 
the overall mission performance. 

Figure 3 summarizes our three approaches to local op-
timization of the mission performance. They vary in the 
degree to which the individual UAV must be aware of 
the current mission quality 
and means to improve it. En-
dowing the UAV with an im-
plicit local model results in 
the fastest and simplest execu-
tion of the swarm, but re-
quires a significant effort in 
designing and validating the 
model. Using a fitness func-
tion that evaluates the quality 
of a given formation with re-
spect to the implicitly as-
sumed mission performance 
relieves the designer of the 
burden of constructing a com-
plete model since it applies a 
heuristic search on potential 
alternatives, but still requires 
off-line specification of what 
a “good” swarm state would 

be. The simulation of the outcome produced by alterna-
tive states restricts the knowledge engineering to the 
description of the operation of the system, but then re-
quires the UAV to figure out the link between the proc-
ess and appropriate optimization strategies. 

The specific characteristics of the three proposed ap-
proaches suggest the following simulation-based transi-
tion path. In the first stage, we apply our knowledge of 
the general process to optimize the mission perform-
ance based on the quality evaluation approach (simulate 
outcome and measure quality). We then perform exten-
sive simulations of the intended mission and character-
ize the swarm states that result in good mission per-
formance (e.g., regular arrays in SAR). Based on this 
characterization, we construct a fitness function that 
measures the degree to which a given state deviates 
from the description of a “good” state. We replace the 
prediction and quality metric with the fitness function 
and validate its performance in the simulation. Finally, 
we analyze the nature of the relocation decisions that 
the individual UAV make and construct and evaluate 
the implicit local model from which the “good” global 
states emerge. At this point, the computational effort 

required for the execution of 
the mission optimization is 
sufficiently small to deploy 
the decision logic onto a real 
resource-constrained UAV. 

Table 3: Natural Examples of Swarming  

Swarming Behavior Entities 
Pattern Generation Bacteria, Slime Mold 
Path Formation Ants 
Nest Sorting Ants 
Cooperative Transport Ants 
Food Source Selection Ants, Bees 
Thermoregulation Bees 
Task Allocation Wasps 
Hive Construction Bees, Wasps, 

Hornets, Termites 
Synchronization Fireflies 
Feeding Aggregation Bark Beetles 
Web Construction Spiders 
Schooling Fish 
Flocking Birds 
Prey Surrounding Wolves 

Inspiration from Natu-
ral Systems 
Our approach to autonomous 
coordination among multiple 
entities is based on principles 
observed in biological com-
munities, which we have out-
lined elsewhere.11 Table 3 
gives examples of the kinds 
of behavior that these tech-
niques can support. Broadly 
speaking, these techniques 
achieve self-organization in  



multi-agent systems by way of local in-
teractions. 

Elsewhere, we have reported how these 
techniques can be applied to such practi-
cal problems as coordinating manufac-
turing operations,1 planning paths and 
deconflicting airspace for UAV’s,14 and 
recognizing patterns in a distributed sen-
sor network without central processing,2 
and compared our approach (based on 
agent interactions through a shared envi-
ronment) with others.12 

A SPATIAL COORDINATION 
EXAMPLE 

As an example, we describe a swarm that we have con-
figured to do target location and imaging in a FOPEN 
scenario. In this scenario, the swarm must achieve three 
objectives that require different behaviors on the part of 
individual UAV’s. 

In searching, it must effectively cover a large search 
space and revisit locations regularly, maximizing detec-
tion probability based on known characteristics of the 
target (e.g., visibility angle), while not exhibiting any 
obvious systematic search patterns that would permit 
mobile targets to execute simple avoidance strategies.  

When a vehicle detects a target, it announces the loca-
tion of the target, and vehicles that receive this an-
nouncement begin imaging. In this phase, a vehicle 
must collect data from varying angles along linear tra-
jectories (box) while minimizing both the effort (the 
number of required vehicles and the distance they must 
move) and the data collection time (by collecting data 
in parallel). 

In addition, individual vehicles require periodic refuel-
ing or other maintenance, and the swarm must ensure 
that individual vehicle requirements are met without 
compromising the ability of the overall swarm to con-
tinue functioning. 

We have defined two mechanisms to address this prob-
lem. The first, an individualistic approach, has a mini-
mum of inter-UAV coordination, and permits any UAV 
to communicate with any other. The other approach, a 
team approach, relies on local inter-UAV communica-
tion, and increases the coordination among the plat-
forms. Different mechanisms can be applied to different 
behaviors in the same swarm. 

Individualistic Approach 
During search, each vehicle executes its own search 
pattern. These patterns are specified off-line to result in 

maximum global dispersion. In our current implementa-
tion, each vehicle selects a point at random on the west-
ern side of the search area, and flies toward it in a 
straight line (Figure 5), then flies due east, then repeats, 
until it detects a target or receives a message from an-
other vehicles that has detected a target. When a vehicle 
detects a target, it broadcasts the location of the target 
to all the other vehicles. 

 

Figure 5: Individualistic search strategy 

During imaging, each vehicle chooses a linear trajec-
tory that passes by the announced target location, exe-
cutes a data collection flight, and communicates results, 
then resumes search behavior. 

To accomplish maintenance, each time a UAV reviews 
its current role, it evaluates an exponential probability 
distribution over its fuel level. Full UAV’s almost never 
return for refueling, while almost empty ones are highly 
likely to return. The stochastic nature of the decision 
breaks the symmetry among UAV’s with similar fuel 
levels, and the swarm stabilizes in a state where a fixed 
proportion is engaged in maintenance at any time, as-
suming similar fuel consumption on the part of all 
UAV’s. 

The individualistic approach has the benefit of requir-
ing fewer messages and less reasoning effort. However, 
it cannot adjust to changing conditions (e.g., the loss of 
a team member), overlap among the vehicles makes 
search and data collection sub-optimal, and the use of 
broadcast communications requires higher comms 
power levels. 

Team Approach 
The team approach uses a digital pheromone mecha-
nism inspired by coordination in insect systems and 
similar to one we have used for real-time path planning 
for UAV’s.14 An important difference is that while that 
application envisioned a network of unattended ground 
sensors maintaining the pheromone field externally to 
the agents, in this case each agent maintains an internal 



pheromone map that tiles the 
search space into discrete cells. 
Each cell is a place in a phero-
mone infrastructure, which means 
that the agent that controls the ve-
hicle may deposit and sense digital 
pheromones of different flavors in 
that cell. The place aggregates de-
posits of the same flavor, propa-
gates (shares) deposits to 
neighboring places, and evapo-
rates (reduces) pheromone concen-
trations over time. The general 
dynamics of our pheromone infra-
structure model are described in 
more detail elsewhere.1 

During search, when a vehicle passes through the area 
in the search space that is assigned to a particular cell, it 
deposits a unit of the visitation pheromone into that cell 
in its internal map. In addition, the agent broadcasts its 
location, and the agents of any other vehicle within 
communications reach then deposit a visitation phero-
mone into their maps too. Thus, the agents mark cells 
that some member of the swarm has already visited. 
Figure 6 shows a snapshot of the visitation pheromone 
map of one agent in the swarm. 

Local concentrations of pheromones lose strength over 
time, which enables the swarm to “forget” visitations to 
locations that occurred a long time ago. This knowledge 
management process ensures that the search process 
keeps revisiting locations in case targets have moved in. 

The individual agent decides its vehicle’s trajectory 
based on its internal map of visitation pheromones. 
Once it has reached its previous goal, the agent prob-
abilistically selects a new location. The probability of 
the selection of a particular location is inversely propor-
tional to its distance to the vehicle’s current location 
and to the strength of the visitation pheromone concen-
tration in the cell that covers this location. Thus the 
agents tend to prefer nearby locations that have not 
been visited recently, and collectively explore the 
whole search space. 

An agent that detects a potential target dynamically 
forms an imaging team. Team 
formation is a collaborative 
process in which agents bid for 
a role in the team depending 
on the match of the vehicles’ 
imaging capabilities with the 
role’s requirements (hard con-
straint) as well as the current 
distance of the eligible vehi-
cles to the detected target (soft 

constraint). 

 

Figure 6: Visitation Pheromone Map 
of one UAV in the Swarm 

Once roles are assigned, the team 
members plot the optimal trajecto-
ries for their respective data acqui-
sition flight and execute the imag-
ing task. Depending on the imag-
ing modality (coherent vs. non-
coherent), the data acquisition may 
be executed individualistically or 
synchronized across the team. 
Once the task is completed, the 
team disbands and the agents re-
sume their search behavior. 

A team-based approach to main-
tenance can accommodate UAV’s with different fuel 
consumption rates, as well as variations in the availabil-
ity of maintenance resources at the base. UAV’s deposit 
a pheromone flavor that communicates the intensity of 
their current desire for maintenance, while the base 
propagates a pheromone indicating its current level of 
load. A UAV’s decision to shift into the maintenance 
role is promoted by its own desire for refuel and inhib-
ited by the level of refueling pheromone it senses from 
neighboring UAV’s and the load pheromone propa-
gated from the base.  

The team approach requires more computational effort, 
and the communications among platforms makes it 
more vulnerable to electronic countermeasures. How-
ever, it can adapt explicitly to the consequences of past 
actions and the state of the current problem, and reduce 
duplication among platforms. 

Demonstration 
To demonstrate these approaches, we distribute targets 
randomly under foliage in a rectangular search area. 
When a vehicle is near a target, it has a probability of 
detecting the target’s presence, a probability that is 
symmetric over the center of the target.  

Table 4 lists the approaches that we have implemented 
for each of the three roles in the problem. We can mix 
and match these mechanisms in a single configuration. 
Currently tested combinations are team search with in-

dividualistic imaging, and in-
dividualistic search with team 
imaging. In all cases, mainte-
nance is currently done in in-
dividualistic mode. 

Figure 7 shows the perform-
ance of the configuration using 
individualistic search and team 
imaging. An important benefit 
of team imaging over indi-

Table 4: Implemented Mechanisms for 
UAV Behaviors 

 Individualistic Team 

Search X X 

Imaging X X 

Maintenance X  

 



Natural Sys-
tems Analogs 

vidualistic imaging is that 
only the required number 
of UAV’s needed for im-
aging are distracted from 
the search task. The others 
continue to search, and if 
another target is detected, 
multiple imaging teams 
can work concurrently. 

Discussion 
This example illustrates 
the utility of the three 
principles that we dis-
cussed earlier. 

Roles Analysis 
A UAV’s shift among 
search, imaging, and main-
tenance is a showcase ex-
ample of the usefulness of 
role-oriented design for high-level agent specifications. 
In both individualistic and team approaches, the code 
for each UAV includes all three roles, so there is no dy-
namic classification. In both cases, dynamic activation 
is invoked in the form of the shift operator between dis-
tinct roles. However, the invocation of shift is different 
in the two cases. In the individualistic approach, agents 
invoke the shift whenever they receive a report of a tar-
get. In the team approach, the shift from search to imag-
ing takes place only after an agent wins the bidding 
process. In both approaches, the shift from imaging to 
search is unilateral, after the imaging run has been 
completed. 
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Verification 
Team

Refueling

Refuel/Maintenance Station

Target

Verification 
Team

Refueling

 

Figure 7: Swarm in Imaging Phase 

The use of digital phero-
mones in the team coordi-
nation approach is a direct 
application of environ-
mental coordination 
mechanisms inspired by 
natural systems, in particu-
lar colonies of social in-
sects. These systems are of 
particular value in applica-
tions that are discrete, dis-
tributed, decentralized, 
and dynamic, and all four 
characteristics are impor-
tant for our application. 
These algorithms are ap-
propriate systems of dis-
crete entities, such as a 
swarm of UAV’s. Digital 
pheromones enable distri-

bution of system knowledge over the swarm, since each 
UAV maintains a local pheromone map of its vicinity, 
and decentralization, since all UAV’s are peers in the 
coordination algorithm, making the system robust to 
loss of any individual platform. Perhaps the most im-
portant benefit of pheromone techniques in this applica-
tion is their support for dynamic environments. A given 
UAV’s environment (which includes the other members 
of the swarm) is constantly changing, and coordination 
mechanisms based on traditional knowledge bases face 
a huge challenge in maintaining consistency. Phero-
mone maps are constantly evaporating, disposing any 
information that is not being reinforced by current ob-
servation, and thus automatically discard obsolete in-
formation and keep themselves consistent. 

Optimization 
The system demonstrated in Figure 7 uses an implicit 
local model for optimization. The algorithm used by a 
single UAV is based on our knowledge that flying a 
rectangle around the target gives a good image, so we 
can translate target location directly into recommended 
trajectories. The agents do not know anything about the 
quality of their mission performance, or how to trans-
late such knowledge into waypoints. This level of opti-
mization economizes run-time execution at the expense 
of up-front engineering to determine the parameters re-
quired for effective performance. Such implicit models 
are highly desirable for efficient deployment on UAV’s 
especially in support of small inexpensive platforms, 
and methods for their systematic development are an 
important topic for research. 

CONCLUSION 
An important application for swarms of UAV’s is coor-
dinated sensing tasks. We have developed a suite of de-
sign principles and algorithmic approaches to this coor-
dination, and demonstrated their effectiveness in soft-
ware simulations. 
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